RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, JANUARY 2015

FIRST YEAR

CHEMISTRY (General) Date : 07/01/2015

Time : 11 am – 12 noon Paper: | Full Marks: 25

<u>Unit - I</u>			
		(Answer <u>any one</u> question) [1×	<13]
1.	a)	Write the electronic configuration of an element having atomic number 35. Predict the probable stable oxidation state of the element.	[2]
	b)	Explain why phosphorous has higher ionisation energy than sulphur in spite of having lesser nuclear charge than sulphur.	[2]
	c)	Using Bohr's theory, find out the ionisation energy of the electron in the hydrogen atom.	[2]
	d)	Discuss the significance of magnetic quantum number.	[2]
	e)	Calculate the amount of energy radiated in the following reaction:	
		$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\text{He} + \text{Energy}$.	[3]
		[Given: $^{238}U = 238 \cdot 1249$ amu, $^{234}Th = 234 \cdot 1165$ amu, $^{4}_{2}He = 4 \cdot 0039$ amu]	
	f)	$^{208}_{82}$ Pb has a n/p ratio of 1.536, yet it is non-radioactive. —Explain.	[2]
2.	a)	Define electronegativity of an element. Why it is not an inherent property?	[2]
	b)	Be has higher ionisation energy value than B. —Explain.	[2]
	c)	Arrange the following ions in increasing order of their ionic radii: H-,I-,Cl-,Br-,F-	[3]
	d)	Explain why ²³⁸ U cannot be commonly used as a nuclear fuel.	[2]
	e)	Calculate the change in energy of the following reaction in Joule—	
		$_{0}^{1}$ n $\rightarrow _{1}^{1}$ p $+_{-1}^{0}$ e	[2]
		[Given: $m_p = 1.00728$ amu, $m_n = 1.00867$ amu and velocity of light, $C = 3 \times 10^8 \text{ ms}^{-1}$]	
	f)	Ionisation energy of noble gases are very high, but their electron affinities are zero. —Explain.	[2]
<u>Unit - II</u>			
		(Answer <u>any one</u> question) [1×	<12]
3.	a)	Name the IUPAC names of the following compounds:	
		i) $[Cr(NH_3)_4Cl_2]Cl$	
		ii) $[Co(NH_3)_4(NH_2CH_2CH_2NH_2)]Cl_3$	[2]
	b)	What do you mean by ambidentate ligands?	[1]
	c)	BF ₃ is weaker Lewis acid than BBr ₃ . —Explain.	[2]
	d)	Calculate the electron affinity of chlorine from the following $\Delta H \text{ data } (\text{Kj mol}^{-1})$	
		$D_{Cl_2} = 242$, $I_{Na} = 494$, $\Delta H_{sub.(Na)} = 109$, $\Delta H_f^o(NaCl) = -414$, $U = -787$	[3]
	e)	A coordination compound is formulated as CoCl ₃ .4NH ₃ . It does not liberate NH ₃ but on treatment with silver nitrate, silver chloride is precipitated. Write the structural formula.	[2]
	f)	Predict the shapes of the following: PbCl ₄ , SbF ₆	[2]
4.	a)	BF ₃ molecule has shorter B–F bond length than that of BF ₄ ion. —Explain.	[2]
	b)	What are the limitations of radius ratio rule?	[2]
	c)	Explain why the bond between sodium and chloride ion is more stronger than that of potassium and chloride ion.	[2]

- d) Show the possible coordination sites of the following ligands: NO_2^- and SCN^- [2]
- e) There are three chlorotoluenes with three dipole moment value of 1.35D, 1.9D and 1.78D. Identify the isomers. [2]
- f) Chelate complexes are more stable than non-chelate complexes. Explain giving example. [2]

____×___